Caribbean Spiny Lobster Fishery Is Underpinned by Trophic Subsidies from Chemosynthetic Primary Production

نویسندگان

  • Nicholas D. Higgs
  • Jason Newton
  • Martin J. Attrill
چکیده

The Caribbean spiny lobster, Panulirus argus, is one of the most valuable fisheries commodities in the Central American region, directly employing 50,000 people and generating >US$450 million per year [1]. This industry is particularly important to small island states such as The Bahamas, which exports more lobster than any other country in the region [1]. Several factors contribute to this disproportionally high productivity, principally the extensive shallow-water banks covered in seagrass meadows [2], where fishermen deploy artificial shelters for the lobsters to supplement scarce reef habitat [3]. The surrounding seabed communities are dominated by lucinid bivalve mollusks that live among the seagrass root system [4, 5]. These clams host chemoautotrophic bacterial symbionts in their gills that synthesize organic matter using reduced sulfur compounds, providing nutrition to their hosts [6]. Recent studies have highlighted the important role of the lucinid clam symbiosis in maintaining the health and productivity of seagrass ecosystems [7, 8], but their biomass also represents a potentially abundant, but as yet unquantified, food source to benthic predators [9]. Here we undertake the first analysis of Caribbean spiny lobster diet using a stable isotope approach (carbon, nitrogen, and sulfur) and show that a significant portion of their food (∼20% on average) is obtained from chemosynthetic primary production in the form of lucinid clams. This nutritional pathway was previously unrecognized in the spiny lobster's diet, and these results are the first empirical evidence that chemosynthetic primary production contributes to the productivity of commercial fisheries stocks.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ecology and Fisheries: Dark Carbon on Your Dinner Plate

Chemosynthetic primary production by symbiotic microbes powers entire ecosystems in the remote deep sea. New research shows that in shallow waters chemosynthetic symbioses can contribute substantially to a vital economic resource - lobster fisheries in the Caribbean Sea.

متن کامل

Application of TOPEX-POSEIDON satellite altimetry to simulate transport dynamics of larvae of spiny lobster, Panulirus marginatus, in the Northwestern Hawaiian Islands, 1993–1996

The spiny lobster, Panulirus marginatus, is endemic to the Hawaiian Archipelago and Johnston Atoll. The species is found throughout the archipelago and is the target of a trap fishery in the northwestern portion of the archipelago known as the Northwestern Hawaiian Islands (NWHI). From the early 1980s to 1990, the majority of fishery catches came from two banks, Necker Island and Maro Reef, loc...

متن کامل

Recruitment in Degraded Marine Habitats: A Spatially Explicit, Individual-Based Model for Spiny Lobster

Coastal habitats that serve as nursery grounds for numerous marine species are badly degraded, yet the traditional means of modeling populations of exploited marine species handle spatiotemporal changes in habitat characteristics and life history dynamics poorly, if at all. To explore how nursery habitat degradation impacts recruitment of a mobile, benthic species, we developed a spatially expl...

متن کامل

Behavioral Ecology of Mobile Animals: Insights from In Situ Observations

We draw on three primary examples from our collective work on mobile decapod crustaceans, fish, and humans, as well as the work by others on fish and invertebrates, to illustrate the beneficial influence of in situ observations on behavioral ecology, marine conservation, and education. Diver observations of mass migration and gregarious behavior in Caribbean spiny lobster (Panulirus argus) in t...

متن کامل

Larval Connectivity and the International Management of Fisheries

Predicting the oceanic dispersal of planktonic larvae that connect scattered marine animal populations is difficult, yet crucial for management of species whose movements transcend international boundaries. Using multi-scale biophysical modeling techniques coupled with empirical estimates of larval behavior and gamete production, we predict and empirically verify spatio-temporal patterns of lar...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Current Biology

دوره 26  شماره 

صفحات  -

تاریخ انتشار 2016